Isotonic Calibration Layer in DNN
常规校准方法
Platt scaling
isotonic regression
isotonic regression layer
- $y_{\text {cali }}=\Sigma_{i=0}^{i=k} \operatorname{Relu}\left(e_i+w_i\right) \cdot v_i+b, v_i=\left{\begin{array}{ll}\text { step, } & \text { if } i<k \ y-s t e p \cdot & \mathrm{i}=\mathrm{k}\end{array}\right.$,$k=\arg \max _j(y-$ step $\cdot j>0)$. #card
分段拟合,对预测值分桶,每个桶一个可训练的权重 wi
relu 保证非负
ei 由校准特征得到的 embedding
Isotonic Calibration Layer in DNN
https://blog.xiang578.com/post/logseq/Isotonic Calibration Layer in DNN.html